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Path-integral treatment of optical and microwave tunneling
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A model based on a statistical method, as deduced from a path-integral treatment of the Brownian motion
proposed by Feynman and Hibbs in 1965, demonstrates to be capable of interpreting the results of delay time
measurements in frustrated total internal reflection experiments at an optical and microwave scale. A plausible
description of the trajectories followed by the system inside the tunneling region, the air gap between the two

dielectric prisms, is given.
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As is well-known, if it is difficult to give an unambiguous
definition of tunneling time, it is even more difficult to obtain
information regarding the paths adopted by the “system”
while tunneling or, in other words, to give a description of
the trajectories (in a semiclassical picture) followed by the
system in these processes.

According to authoritative and widely shared opinions,
this problem appeared not to have a solution since, even
within the semiclassical approaches, there are no simulta-
neous (real) solutions to the Euler-Lagrange equation and the
Hamilton-Jacobi equation. Some progress has been made by
adopting complex-valued functions that describe the motion
of the “particle.” This satisfies the above-mentioned equa-
tions in a path-integral treatment over complex paths, and
thereby provides a full analog for the path integral of the
stationary phase approximation [1].

An alternative approach to this problem can be envisaged
along the lines of a stochastic modeling of the telegrapher’s
equation [2], according to which the system follows zigzag
paths in space time. These are particularly suitable for de-
scribing unidimensional problems [3].

In this paper we shall follow a different procedure, by
adopting and developing a statistical method as earlier pro-
posed by Feynman and Hibbs for the Brownian motion [4]
and adapting it to the tunneling, i.e., to the cases of frustrated
total internal reflection (FTIR) of microwaves [5] and light
[6]. In this way, we can obtain information about the shape
of the trajectories in the bidimensional space of the air-gaps
that separate two dielectric prisms.

The experimental results of traversal time versus the gap
width relative to the two cases considered, as taken from
Refs. [5] and [6], are reported in Figs. 1(a) and 1(b), respec-
tively. They exhibit a more or less pronounced structure
which can be attributed to a coarse grain of the optical paths.
As for the curves fitting these data, see below for the results
of our analysis.

Alternative stochastical model. By analogy with the sto-
chastical process experienced by a particle traversing a ma-
terial slab (Brownian motion) as treated in Ref. [4], we as-
sume that the tunneling process in the air gap has a stochastic
nature that is similar to the mechanism adopted in Ref. [2].

Let us use p to denote the probability that the “particle”
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suffers a “collision,” with N being the total number of colli-
sion centers traveling across the gap of width 7. Therefore
n=pN is the average number of collisions, and u=7/T is the
average number per unitary length. Analogously, 1-p is the
probability of the absence of collisions. The probability that
the particle suffers n collisions (avoiding N—n) is given by

[7]

—n—n

n

N
Pn:( )l’n(l_p)N—n:e > (1)
n n.

where the last member holds true for p<<1 and N> 1.

This picture represents what can be considered as the fine
grain of the paths. The deviation angle from the incoming
direction is given by

o) = > anlt—1,), )
Jj=1

where a; is the deflection after the jth collision and 7
is the step function. The deviations occur with variable
intensities  distributed according to a Gaussian p(a)
=(2mo)""? exp(-a®/20?) with a standard deviation of o>
The transversal displacement dx, which corresponds to the
longitudinal one dt, is dx=6dt, x=6, and X= 6. By differen-
tiating Eq. (2), we have

f6)=0(0) =2 a;8t~1) (3)
j=1

and the probability functional corresponding to the “history”
of deviations is given as it follows.

Probability functional. This section is devoted to a sche-
matic description of the obtainment of the probability func-
tional, which represents the crucial point in the adopted mod-
eling.

By starting from the definition of “characteristic function”
®(k) of a probability distribution P(x) [4], it is natural to
extend these definitions to the case of distributions of func-

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.75.066612

MORETTI, RANFAGNI, AND SANDRI

60 N air gap D [EiEm e

T Br

o/ 0] i DI

(6]

o
T
=

IS
o
T
A
3
3
4,
/
-
=
=
—=—
—=—

230 |
;E; } E E
= 20 r

10 | B

.l
0 L L L
0 5 10 15 20 25

@ T (um)

50

OE[' ‘ Ll Ll Ll Ll ‘
5 10 15 20 25

o T (mm)

FIG. 1. (Color online) Traversal time results, as a function of the
gap width between the two prisms in FTIR experiments whose ge-
ometry is sketched in the inset. For optical laser beam (a): wave-
length A=3.39 um, i=45.5°, and p=1.409; for the microwave case
(b): A=3.2 cm, i=60°, and p=1.49. The curves are obtained from
Eq. (21) with parameter values as, for (a): T(max)=23.7 um,
D=12.1 pm, and Br=22.3° and for (b): T(max)=24 mm,
D=22.6 mm, and B;=40.5°.

tions and not of single variables or discrete vectors. There-
fore P(x) becomes a functional P[f(r)], and we obtain for-
mally

Dlk(r)]= f D)0 OO P[f(7)], 4)

Plf(1)]= f Dk(t)e T OFOPk(1)], (5)

where ®[k(r)] is the “characteristic functional” of P[f(r)].
These equations are formal ones, since the rule for their ef-
fective calculation is not given. D is the symbol of functional
integration, and P[f(r)]Df(z) is the probability that the func-
tion f(¢) lies in a neighbor Df(r). However, a precise mean-
ing to these words can be given only by a “discretization”
procedure [8]: by dividing the interval (0,7) by N points 7,,
when N — oo, PDf is the probability that f(z) lies between f;
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and f,+df, at t=t,, between f, and f,+df, at t=t,,... be-
tween fy and fy+dfy at t=ty [f;=£(1,)].

We will return to Eq. (5) later. Our aim now is to calculate
®[k(r)] directly in a heuristic way, and then to use Eq. (5) in
order to obtain the probability.

We are interested in a stochastic function f(z), i.e., a func-
tion that represents a random process; in particular, a class of
functions of the form

Jj=1

that represents a sequence of n pulses distributed at random
points #; in the spatial (or time) interval (0,7), and that have
intensities @; and the same normalized shape u(r). Let us
assume that the number n of pulses is distributed with prob-
ability P,, and that the intensities a; are distributed with a

probability density p(a). From Eq. (4) it follows that

P[k(1)] = f D)o 0O Pl £(1)]

0 n © T
=PIl | da exp{iaj f dtk(t)u(t—tj)}p(aj).

n=0  j=1J - 0
(7)

We would like to point out that the calculation of Eq. (7)
represents the “heuristic” step in the procedure by reducing
the computation of a functional integral to a sort of mean
value. Defining

W= f da ¢ p(a) ®)

and assuming that the n pulses are distributed with uniform
probability over the complete spatial (or time) interval, we
are led to write

s ()
@[k(t)]—%h(T) ,

T
‘y:j dsw
0

If the number of pulses (0,7) obeys a Poisson distribution,
Eq. (1), and by recalling that 7=uT, we have

where

T
f dtk(t)u(t - s)] . 9)

0

Dlk(]=e"2 ni(ﬁ> = I, (10)

By admitting that the pulse shape is very narrow, i.e., /() has
the form (3), it follows that

T
W{f dtk(t)u(t—s)] = W[k(s)] (11)

0

and
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T
Plk(1)] = eXP(- Mf d{1 - W[k(t)]}> : (12)
0

If the distribution of intensities is Gaussian with zero
mean and standard deviation o?, Eq. (8) gives W[w]
=exp(—c?w?/2) and, for small values of o, ®[k(r)] takes the
form

po (1
D[k(1)] = exp(— TJ dt[k(t)]z). (13)
0

Now, from the characteristic functional ®[k(7)], we can ob-
tain the probability functional P[f(z)] from Eq. (5). By using
the discretization procedure and introducing a suitable nor-
malization constant B,

N o
Plf(n]=1im [[ B f dkje-m“’vfﬁ”k?), (14)
N—x j:l —o0

where bh=uo?/2. The calculation is a standard one [8], and
the final result is just

T
Plf(n)]= eXP(— % f dt[f(t)]z), (15)
0

where R=puo”. Since there is a biunivocal correspondence
between the trajectory x(¢) and f(z), P[x(¢)]o P[f(r)]. By re-
calling that X(r)=£(¢), from Eq. (15), we obtain

T
P[x(2)] exp(— ﬁ f dt[)'é(t)]z) . (16)

0

We would like to point out the difference between this ex-
pression and the one obtained for the usual Brownian motion
described by the diffusion constant d, giving the probability
of a Brownian path [9]:

T
Plx(1)] e exp(— ﬁj dt[)é(t)]z). (17)
0

Our type of Brownian motion, on the contrary, is a somewhat
particular one, driven by a Poisson process and with a well-
defined initial velocity [4]. It follows that the probability
functional is different, and it is given by Eq. (16).
Application to our problem. We are interested in the prob-
ability P(D, ) that we have x(T)=D, 6(T)=4, the initial
conditions being x(0)=0, 6(0)=0. Therefore we have to in-
tegrate P[x(z)] over all the trajectories satisfying the above
boundary conditions, namely, by functional integration,

X(T)=D, 0(T)=ip 1 (T
P(D, ) = f Dx(t)exp(— ﬁf dt[)'é(t)]z).

x(0)=0, 6(0)=0 0
(18)

This integral, in the limit of small R, is dominated by the
trajectories that minimize the functional in the exponent. We
know that, if the functional has the form [(dtF[i(r)], the
extremal is supplied by the Euler-Poisson equation [10]
(d*/dr*)(9F 1 9%)=0 which, in our case, gives X=0. By using
the boundary conditions, we easily obtain [11]
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FIG. 2. (Color online) Most probable paths inside the air gap in
the optical case (a) and microwave case (b). The continuous curves
which fit the data of Figs. 1(a) and 1(b), respectively, are given by
the function x(7), when situated in the gap space. The dotted line in
(b) resembles a typical stochastic path [3].

3

2
x(t)=(3D—¢T)(§) +(¢T—2D)(;) .19

This equation resolves our problem, since it will supply the
shape of the most probable paths in the gap space. It is worth
observing that the corresponding path in the case of the prob-
ability expressed by Eq. (17), in the limit of small d, is given
by the equation ¥=0 (free particle).

We first want to derive the expression of the traversal time
that describes the data reported in Fig. 1. According to the
geometry adopted [see the inset in Fig. 1(a)], the angle 6 will
be replaced by i— 3, where i is the incidence angle and 3 is
the mean deviation angle with respect to the perpendicular of
the gap. Analogously, ¢ becomes i—f7. In this a way,

T becomes T=Tcos(i—B;)/cos By and ¢ becomes 7
=t cos(i—B)/cos B.

In order to simplify the analysis, let us assume that
t/T=7/T. According to Refs. [5] and [6], the quantity D in
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Fig. 1 is a measure of the traversal time which is given by
T=p5/c sin i, with ¢ sini/p being the velocity component
along the gap of the incident ray and p the refractive index of
the prisms. By taking into account these relations, the tra-
versal time as a function of ¢ can be expressed as

2p

t) = m[r sin i —x(1)], (20)

where x(¢) is now given by

[t 2 _ ¢ 3
x(t)=[3D_(i_,BT)T]<;) +[(i_18T)T_2D]<;,> .
(21)

The quantities B and D in this last expression should be
considered as moderately adjustable parameters so that they
fit the results in Figs. 1(a) and 1(b), as shown by the curves
reported there which rather well reproduce the behavior of
the experimental data [12].

When properly located in the space of the gaps, the func-
tion x(7) gives a plausible description of the most probable
trajectories followed by the “system” in the gap between the
two prisms. The results relative to the case of optical and
microwave tunneling are shown in Figs. 2(a) and 2(b), re-
spectively. From an inspection of these figures, we note that,
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apart from a realistic and plausible rounding, these curves are
reminiscent of the zigzag paths hypothesized in the model of
Ref. [3]. The step dimensions of what we consider to be the
coarse grain of the paths are, for the case of a microwave of
the order of centimeters, analogous with the findings of Ref.
[3]. In the case of optical tunneling, these dimensions are
obviously smaller, of the order of microns, but in any case
are comparable with the wavelength. As mentioned before,
the fine structure of the paths, the dimensions (dx,dr) of
which can be assumed to be the average interval between
successive diffusive processes, is presumably several orders
of magnitude smaller than the one relative to the coarse
grain.

We can therefore conclude that the statistical method
adopted, although inspired from Ref. [4], represents the main
core of the approach to our problem, and deserves to have
the schematic description as given before. By utilizing it, we
were able to obtain an alternative interpretation of tunneling
in FTIR experiments [13], according to a procedure which
can be considered to be an extension to two-dimensional
cases of the fecund approach originally proposed by Kac, as
mentioned in Ref. [2]. In this way we have obtained, besides
the description of the traversal time of the gap (which con-
stitutes the barrier in FTIR), the shape of the most probable
trajectories (rays) inside the tunneling region.
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